
This article was published in an Elsevier journal. The attached copy
is furnished to the author for non-commercial research and

education use, including for instruction at the author’s institution,
sharing with colleagues and providing to institution administration.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Computers and Chemical Engineering 31 (2007) 1552–1564

Hybrid fuzzy model-based predictive control of
temperature in a batch reactor
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Abstract

Processes in industry, such as batch reactors, often demonstrate a hybrid and non-linear nature. Model predictive control (MPC) is one of the
approaches that can be successfully employed in such cases. However, due to the complexity of these processes, obtaining a suitable model is
often a difficult task. In this paper a hybrid fuzzy modelling approach with a compact formulation is introduced. The hybrid system hierarchy is
explained and the Takagi–Sugeno fuzzy formulation for the hybrid fuzzy modelling purposes is presented. An efficient method for identifying the
hybrid fuzzy model is also proposed.

A MPC algorithm suitable for systems with discrete inputs is treated. The benefits of the MPC algorithm employing the proposed hybrid fuzzy
model are verified on a batch-reactor simulation example: a comparison between MPC employing a hybrid linear model and a hybrid fuzzy model
was made. We established that the latter approach clearly outperforms the approach where a linear model is used.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Dynamic systems that involve continuous and discrete states
are called hybrid systems. Most industrial processes contain
both continuous and discrete components, for instance, dis-
crete valves, on/off switches, logical overrides, and so forth.
The continuous dynamics are often inseparably interlaced with
the discrete dynamics; therefore, a special approach to mod-
elling and control is required. At first this topic was not treated
systematically (van der Schaft & Schumacher, 1999). In recent
years, however, hybrid systems have received a great deal of
attention from the computer science and control community.

The principle of model predictive control (MPC) is based on
forecasting the future behavior of a system at each sampling
instant using the process model. The complex hybrid and non-
linear nature of many processes that are met in practice causes
problems with both structure modelling and parameter identi-
fication; therefore, obtaining a model that is suitable for MPC
is often a difficult task. Classic modelling and especially iden-
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tification methods that originate from linear system theory are
inadequate for treating such systems. Hence, the need for special
methods and formulations when dealing with hybrid systems is
very clear.

MPC methods for hybrid systems employ several model
formulations. Often the system is described as mixed logical
dynamical (MLD) (Bemporad & Morari, 1999). A lot of inter-
est has also been devoted to piecewise affine (PWA) formulation
(Sontag, 1981), which has been proven to be equivalent to many
classes of hybrid systems (Heemels, Schutter, & Bemporad,
2001). What is more, MLD models can be transformed to the
PWA form. The optimal control problem for discrete-time PWA
systems can be converted to a mixed integer optimization prob-
lem and solved online (Mayne & Raković, 2003). On the other
hand, in Kerrigan and Mayne (2002) the authors tackle the opti-
mal control problem for PWA systems by solving a number of
multiparametric programs offline. In such manner, it is possible
to obtain a solution in the form of a PWA state feedback law that
can be efficiently implemented online.

The aforementioned methods mainly consider systems with
continuous inputs, despite the fact that solutions based on
(multiparametric) mixed integer linear/quadratic programming
(mp-MIQP/MILP) can be applied to systems with discrete inputs
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Nomenclature

Modelling and identification
a1jd, . . ., anjd consequent fuzzyfied parameters for Rjd

b1jd, . . ., bmjd consequent fuzzyfied parameters for Rjd

q(k) discrete state
rjd consequent fuzzyfied parameters for Rjd

Rjd rule jd
u(k) input vector
x(k) continuous state vector
y(k) output vector
ŷp(k + 1) predicted output of the system
Yjd output data vector
β(k) normalized degrees of fulfillment
μ
A
j

1
, . . . , μ

A
j
n

membership values

�(k) matrix of consequent fuzzyfied parameters
ψ(k) regressor
�jd regression matrix for Rjd

MPC algorithm
h current level of prediction
H maximum prediction horizon
HZ maximum prediction horizon in case Z > 1
J cost function
M number of possible input vector values
Qk+h
k sequence of discrete states

Tpred maximum time of prediction
TS sampling time
u1, . . . , uM input vectors used in the MPC algorithm

Uk+h−1
k sequence of input vectors

Xk+hk sequence of continuous state vectors
Z number of time-steps through which the inputs

are held

Batch reactor
c specific heat capacity of the ingredients in the

reactor’s core
cw specific heat capacity of the ingredients in the

reactor’s water jacket
kC position of the on/off valve for cool water
kH position of the on/off valve for hot water
kM position of the mixing valve
m mass of the ingredients in the reactor’s core
mw mass of the ingredients in the reactor’s water

jacket
S contact area
T temperature of the reactor’s core
TC temperature of the cool water
TH temperature of the hot water
Tin temperature of the fresh input water
Tw temperature of the reactor’s water jacket
T0 temperature of the surroundings
φ flow of the water in the reactor’s water jacket
λ thermal conductivity

� vector of parameters for subsystem T
�1, �2 matrix of consequent fuzzyfied parameters for

subsystem Tw
�1,lin, �2,lin vector of parameters for subsystem Tw-

hybrid linear model

as well. However, the computational complexity increases dras-
tically with the number of discrete states, and so these methods
can become computationally too demanding. An algorithm for
the efficient MPC of hybrid systems with discrete inputs only is
proposed in Potočnik, Mušič, and Zupančič (2005).

Most of the previous work related to the MPC of hybrid
systems is based on (piecewise) linear and equivalent models.
However, such approaches can prove unsuccessful when dealing
with distinctive non-linearities. Since a PWA formulation can
only represent piecewise affine systems, further segmentation is
required in order to suitably approximate the non-linearity. The
new segments introduce new discrete auxiliary variables in the
MILP/MIQP optimization program, which causes a higher com-
plexity, often resulting in programs that are computationally too
demanding.

A non-linear modelling approach for MPC purposes is pre-
sented in Škrjanc and Matko (2001). The authors introduce
an analytical predictive-control-law for fuzzy systems. The
modelling and identification methodology is usable for plain
non-linear systems, but not for the structurally more complex
class of hybrid systems. A hierarchical identification of a fuzzy
switched system (Witsenhausen, 1966) is introduced in Palm and
Driankov (1998). Furthermore, two structure-selecting meth-
ods for non-linear models with mixed discrete and continuous
inputs are presented in Girimonte and Babuška (2004). In Qin
and Jia (2002) a fuzzy control method is implemented in the
low control-level for a class of hybrid systems based on hybrid
automata.

The basic idea of this paper is to present an efficient approach
for obtaining a hybrid fuzzy model by means of identifying the
unknown system. Some concepts from the previous work are
extended to non-linear hybrid systems. In the paper a formu-
lation for a hybrid fuzzy model that is based on a hierarchical
structure and can be written in a compact form is proposed.
In addition, an efficient parameter-estimation method is intro-
duced. We suggest that such a hybrid fuzzy model is suitable for
implementation in the MPC of non-linear hybrid systems with
discrete inputs based on a reachability analysis. By using a more
accurate model for the MPC, a better control performance can
be achieved, which is a significant advantage of the presented
approach.

The outline of the paper is as follows. In Section 2 the struc-
ture modelling of a hybrid fuzzy model is discussed. This is
followed by Section 3, which deals with the parameter esti-
mation of the model. In Section 4 an algorithm for the MPC
of systems with discrete inputs based on a reachability analy-
sis is treated. In the following sections, a batch-reactor process
is introduced. The modelling and parameter estimation of the
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process are tackled and the framework is verified by means of
a simulation experiment. Finally, a comparison between MPC
employing a hybrid linear model and a hybrid fuzzy model is
made.

2. Modelling of a hybrid fuzzy model

Dynamic systems are usually modelled by feeding back
delayed input and output signals. In the discrete-time domain a
common non-linear model structure is the Non-linear AutoRe-
gressive with eXogenous inputs (NARX) model (Sjoberg et al.,
1995), which gives the mapping between the past input–output
data and the predicted output.

ŷp(k + 1) = F (y(k), y(k − 1), . . . , y(k − n+ 1), u(k),

u(k − 1), . . . , u(k −m+ 1)) (1)

Here, y(k), y(k − 1), . . ., y(k − n + 1) and u(k), u(k − 1), . . .,
u(k − m + 1) denote the delayed process output and input sig-
nals, respectively. Hence, the model of the system is represented
by the (non-linear) function F.

In this paper, a special class of systems is addressed, that is,
non-linear hybrid systems with discrete inputs. Therefore, in Eq.
(1) u stands for the discrete input.

2.1. Hybrid system hierarchy

As already mentioned, many processes met in practice
demonstrate a hybrid nature, which means that the continuous
dynamics are interlaced with the discrete dynamics. A special
class of such systems is called switched systems, where the con-
tinuous states remain continuous even when the discrete states
are changed, that is, no jumps of the continuous state vector are
allowed. In this paper we deal with hybrid systems represented
by a hierarchy of discrete and continuous subsystems where the
discrete part is atop the hierarchy. A discrete-time formulation
is described in the following equations:

x(k + 1) = fq(x(k),u(k)) (2)

q(k) = g(x(k), q(k − 1),u(k)) (3)

Here, x ∈ Rn is the continuous state vector, which includes all
relevant system outputs y (see Eq. (1)), that is, measurable con-
tinuous states (delayed and non-delayed) that influence the state
vector in the next time-step. u ∈ Rm denotes the input vector.
q ∈ Q (where Q = {1, . . ., s}) is the discrete state, which defines
the switching region. Discrete states are also referred to as oper-
ating modes. There are s operating modes of the hybrid system.
The hybrid states are hence described at any time-step k by the
set of states (x(k), q(k)) in the domain Rn × Q.

The local behavior of the model described in Eq. (2) depends
on the discrete state q(k), which defines the current function fq.

Eq. (3) introduces a modification of the strict Witsenhausen
hybrid system formulation (Witsenhausen, 1966) in the sense
that the discrete state q(k) depends on the input vector u(k) as
well as on the continuous state vector x(k) and the previous
discrete state q(k − 1).

The continuous part of the system is generally non-linear,
therefore it can be modelled as a Takagi–Sugeno fuzzy model,
as shown in Section 2.2.

2.2. Generalization of the Takagi–Sugeno formulation for a
non-linear hybrid system

In order to approximate a non-linear system, a fuzzy formula-
tion can be employed. Fuzzy models can be regarded as universal
approximators, which can approximate continuous functions to
an arbitrary precision (Castro, 1995; Girosi & Poggio, 1990).

The system dynamics can be formulated as a Takagi–Sugeno
fuzzy model. In order to address non-linear hybrid systems, we
have generalized the model formulation by incorporating the
discrete part of the system dynamics given in Eq. (3) in the rule
base. In this instance, the rule base of the hybrid fuzzy system
is represented in the following equation:

Rjd : if q(k) is Qd and y(k) is Aj1 and . . . and

y(k − n+ 1) is Ajn

then ŷp(k + 1)

= fjd(y(k), . . . , y(k − n+ 1), u(k), . . . , u(k −m+ 1)),

for j = 1, . . . , K and d = 1, . . . , s (4)

The if-parts (antecedents) of the rules describe hybrid fuzzy
regions in the space of the input variables of the hybrid fuzzy
model. Here, q(k) ∈ {1, . . ., s} stands for the discrete state of
the non-linear hybrid system, that is, its operating mode. Qd and
A
j
i represent (fuzzy) sets characterized by their crisp and fuzzy

membership functions, respectively.
The number of relevant rules in the hybrid fuzzy model is Ks.

Generally speaking, K depends on the number of fuzzy member-
ship functions for each antecedent variable y(k), . . ., y(k − n + 1),
u(k), . . ., u(k − m + 1). The membership functions have to cover
the whole operating area of the system. What is more, the rules
have to distinguish all possible combinations of the member-
ship functions in the antecedent variable space. Hence, K is a
product of the number of membership functions correspond-
ing to each antecedent variable y(k), y(k − 1), . . ., y(k − n + 1),
u(k), . . ., u(k − m + 1). Note that there are K fuzzy setsAji as the
appurtenant membership functions are the same for every rule
Rjd, regardless of d. This means that the fuzzy partitioning of the
state-space is the same, regardless of the current discrete state
(operating mode) of the system. In other words, the normalized
degrees of fulfillment are calculated only from the continuous
states of the system.

On the other hand, s denotes the number of operating modes
of the non-linear hybrid system, which is also the number of crisp
membership functions characterizing the sets Qd. The number
of operating modes depends on the partitioning of the state-
space and the number of discrete inputs. For instance, in case
we have two discrete input variables and each variable can have
four discrete values, the number of operating modes (due to
discrete inputs) is eight. However, if there are some infeasi-
ble (unwanted or unneeded) input combinations, the number
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of operating modes of a hybrid fuzzy system is appropriately
reduced.

The then-parts (consequences) are functions of the inputs
of the hybrid fuzzy model. Here, ŷp(k + 1) is an output variable
representing the predicted output of the process in the next time-
step (see Eq. (1)).1 There is one function of inputs fjd defined for
each rule Rjd; j = 1, . . ., K and d = 1, . . ., s in the hybrid fuzzy
model. In general, fjd can be a non-linear function. However,
usually an affine function fjd is used, as shown in the following
equation:

fjd(y(k), . . . , y(k − n+ 1), u(k), . . . , u(k −m+ 1))

= a1jdy(k) + · · · + anjdy(k − n+ 1) + b1jdu(k) + · · ·
+bmjdu(k −m+ 1) + rjd (5)

In this case fjd determines the output, while a1jd, . . ., anjd, b1jd,
. . ., bmjd and rjd denote consequent parameters, all correspond-
ing to the rule Rjd.

The output of the hybrid fuzzy model in a compact form is
given by the following equation:

ŷp(k + 1) = β(k)ΘT(k)ψ(k) (6)

Here, β(k) represents the normalized degrees of fulfillment for
the whole set of fuzzy rules (j = 1, . . ., K) in the current time-step
k, written in the vector form β(k) = [β1(k) β2(k) . . . βK(k) ].
We assume the normalized degrees of fulfillment, which are
generally time-dependent, comply with Eq. (7) for every time-
step k:

β(k)I =
K∑
j=1

βj(k) = 1 (7)

Here, I is the unity vector.
The normalized degree of fulfillment βj(k) corresponding to

a set of rules Rjd for every d = 1, . . ., s is obtained by using
a T-norm (Sugeno & Tanaka, 1991). In our case it is a simple
algebraic product, given in the following equation:

βj(k) =
μ
A
j

1
(y(k))· · ·μ

A
j
n
(y(k − n+ 1))∑K

i=1μAi1
(y(k))· · ·μAin (y(k − n+ 1))

(8)

Here, μ
A
j

1
(y(k))· · ·μA (y(k − n+ 1)) denote the membership

values (Babuška, 1996; Babuška & Verbruggen, 1996; Sugeno
& Tanaka, 1991).

In Eq. (6), �(k) denotes a matrix with n + m + 1 rows and K
columns, which contains the consequent fuzzyfied parameters
of the hybrid fuzzy model in the current time-step k. As noted
in Eq. (9), �(k) is actually a function of the discrete state of the

1 When applying the Takagi–Sugeno formulation MPC purposes, ŷp(k + 1)
can also be regarded as the predicted state of the system x̂(k + 1) (see Eq. (2)).

hybrid fuzzy system in the current time-step q(k).

�(k) = �(q(k)) =

⎧⎪⎪⎨
⎪⎪⎩

�1 if q(k) = 1
...

...

�s if q(k) = s

⎫⎪⎪⎬
⎪⎪⎭ (9)

The matrices �d contain the consequent fuzzyfied param-
eters of the hybrid fuzzy model for each operating mode
(q = d ∈ {1, . . ., s}), individually. We assume the set of matrices
�d to be time-invariant.

Each matrix �d contains all the consequent fuzzyfied param-
eters of the hybrid fuzzy model for the set of hybrid fuzzy rules
{Rjd}, where d is fixed and j = 1, . . ., K. �d is constructed as
shown in the following equation:

�T
d =

⎡
⎢⎢⎣
a11d . . . an1d b11d . . . bm1d r1d

...
...

...
...

...

a1Kd . . . anKd b1Kd . . . bmKd rKd

⎤
⎥⎥⎦ (10)

In Eq. (6),ψ(k) denotes a regressor in time-step k. The regres-
sor contains all the relevant model inputs that are needed in fjd.
ψ(k) is constructed as shown in the following equation:

ψT(k) = [ y(k) . . . y(k − n+ 1) u(k) . . . u(k −m+ 1) 1 ]

(11)

In general, hybrid fuzzy models can have multiple inputs and
outputs (also known as multivariable models). In the case that
the system has several outputs, the functions of the inputs fjd can
be regarded as vector functions. In modelling, however, we can
concern ourselves only with single-output hybrid fuzzy models
and, accordingly, presume fjd to be a scalar function. In the
case of modelling a multiple-output process, several models in
parallel can be used instead, without any loss of generality. Fur-
thermore, if the system has several inputs, the regression vector
is simply extended so as to include all the relevant model inputs.

A similar approach can be taken into consideration when
dealing with higher-than-first-order processes (n > 1). The
regression vector therefore comprises all the system outputs
from past time-steps y(k − 1), . . ., y(k −n + 1) needed for
predicting ŷp(k + 1). However, in the case that it is possible
to measure the relevant system states, which can substitute
the system outputs from the past time-steps y(k − 1), . . .,
y(k − n + 1) in order to predict ŷp(k + 1), it is generally more
appropriate to employ several (simpler) first-order models
running in parallel in place of a single nth-order model for MPC
purposes. If such first-order models are not feasible, it is still
suitable to employ several lower-than-nth-order models instead.
To put it another way, it is generally reasonable to make use of
all the available data measured in a single time-step. However,
due to unmeasurable system states it is sometimes not possible
to carry out such an approach.

3. Identification of the hybrid fuzzy model

The hybrid fuzzy system with a common consequence struc-
ture (described in Section 2.2) can be expressed as a global linear
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model. The input-dependent parameters given in Eq. (12) can
be derived from Eq. (10).

�̃(k) = �(k)β(k)T (12)

In this case the hybrid fuzzy model output (6) can be described
as in the following equation:

ŷp(k + 1) = �̃(k)Tψ(k) (13)

To identify a hybrid fuzzy system means to obtain the hybrid
fuzzy model parameters a1jd, . . ., anjd, b1jd, . . ., bmjd and rjd for
each rule Rjd; j = 1, . . ., K and d = 1, . . ., s. To put it another way,
all the matrices �d have to be established (see Eq. (10)).

The regression matrix �jd for the rule Rjd in Eq. (14) is
obtained by using the whole set of input data for the hybrid
fuzzy system. Here, index k runs from k1 to kPjd , where Pjd
denotes the number of input–output data pairs corresponding to
the rule Rjd. However, only data from time-steps k that com-
ply with the conditions in Eqs. (15) and (16) are actually used
for constructing the regression matrix �jd. Here, δ denotes a
small positive number. Since the model parameters are obtained
by matrix inversion (described later in this section), compli-
ance with Eq. (16) is essential for obtaining suitably conditioned
matrices:

�jd =

⎡
⎢⎢⎣

βj(k1)ψT(k1)
...

βj(kPjd )ψT(kPjd )

⎤
⎥⎥⎦ (14)

q(k) = d (15)

βj(k) ≥ δ (16)

The output variable of the system y is included in the output
data vector Yjd, which corresponds to the rule Rjd, as written in
Eq. (17). Again, only data from time-steps (k + 1) that comply
with the conditions in Eqs. (15) and (16) are actually used for
constructing the output data vector Yjd.

Y jd =

⎡
⎢⎢⎣
βj(k1)y(k1 + 1)

...

βj(k1)y(kPjd + 1)

⎤
⎥⎥⎦ (17)

The output contribution ŷjdp (k + 1) corresponding to the rule
Rjd is written in the following equation:

βj(k1)ŷjdp (k + 1) = �T
jd(βj(k1)ψ(k)) (18)

Here, vector �jd represents a column in the matrix �d, which
contains the parameters of the hybrid fuzzy model corresponding
to the rule Rjd as denoted in the following equation:

�T
jd = [a1jd . . . anjd b1jd . . . bmjd rjd ] (19)

According to Eqs. (14), (17) and (18), the hybrid fuzzy
model parameters for the rule Rjd can be obtained using the
least-squares identification method as written in the following

equations:

�jd = (�T
jd�jd)

−1
�T
jdY jd (20)

By calculating the hybrid fuzzy model parameters for the
whole set of rules Rjd; j = 1, . . ., K and d = 1, . . ., s the hybrid
fuzzy model is finally established.

The parameters of the hybrid fuzzy model are estimated on
the basis of measured input–output data using the least-squares
identification method. The approach is based on decomposi-
tion of the data matrix � into Ks submatrices �jd. Hence, the
parameters for each rule Rjd (j = 1, . . ., K and d = 1, . . ., s) are
calculated separately. Due to better conditioning of the sub-
matrices �jd, compared to the conditioning of the whole data
matrix �, this approach leads to a better estimate of the hybrid
fuzzy parameters, or to put it in another way, the variances of
the estimated parameters are smaller compared to the classic
approach given in the literature (Babuška, 1996; Babuška &
Verbruggen, 1996; Sugeno & Tanaka, 1991; Takagi & Sugeno,
1985).

The described instantaneous linearization generates the
parameters of the global linear model (see Eq. (12)), which
depends on the antecedents of the hybrid fuzzy system q(k),
y(k), . . ., y(k − n + 1), u(k), . . ., u(k − m + 1). In the case of MPC,
the global linear parameters can be used directly to predict the
behavior of the system. In this case, the controller has to adapt
to the dynamic changes online.

4. Model predictive control of systems with discrete
inputs based on a reachability analysis

Model predictive control is an approach where a model of
the system is used to predict the future evolution of the system
(Camacho & Bordons, 1998; Maciejowski, 2002). The most
appropriate input vector is established and applied for every
time-step. Its determination is an optimization problem that is
solved within a finite horizon H, that is, for a pre-specified
number of time-steps ahead. For each time-step k a sequence
of optimal input vectors (21) is acquired, which minimizes the
selected cost function while considering the eventual constraints
of the inputs, outputs and system states. However, only the first
vector of the optimal sequence is actually applied during the
current time-step. In the next time-step, a new optimal sequence
is determined, and so forth.

Uk+H−1
k = {u- (k), u- (k + 1), . . . , u- (k +H − 1)} (21)

4.1. Tree of evolution

Since the proposed control algorithm is limited to systems
with discrete inputs only, the possible evolution of the system
over time-steps h up to a maximum prediction horizon H can be
illustrated by a tree of evolution, as shown in Fig. 1 for H = 4 and
3 input vectors. The nodes of the tree represent reachable states,
and branches connect two nodes if a transition exists between
the corresponding states.

For a given root-node V1, representing the initial state xi =
x-(k|k) and qi = q(k|k), the reachable states are computed and
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Fig. 1. Example of an explored tree of evolution. The optimal node is V14,
therefore the input uopt = u2 is selected and applied.

inserted in the tree as nodes Vi, where i indexes the nodes as
they were successively computed. The notation (k1|k2) denotes
the time-step of the current node in the MPC algorithm (k1) and
the time-step, in which the algorithm started (k2), that is, the
actual time-step in the control-process.

A cost value Ji is associated with each new node, and based
on the cost value the most promising node is selected. After
labelling the node as explored, new reachable states emerging
from the selected node are computed. The construction of the tree
of evolution continues upwards first until one of the following
conditions occurs:

• The value of the cost function (see Section 4.4) at the current
node is greater than the current optimal one (Ji ≥ Jopt).2

• The maximum step horizon has been reached (h = H).

If the first condition occurs, the node is labelled non-
promising and thus eliminated from further exploration. On
the other hand, if the node satisfies the second condition only,
it becomes the new current optimal node (Jopt = Ji), whereas
the sequence of input vectors leading to it becomes the current
optimal one.

The exploration continues from the topmost step horizon,
where unexplored nodes can be found, and so forth, until all the
nodes are explored and the optimal input vector uopt(k) can be
derived from the current optimal sequence. The optimal input
vector is applied to the system uopt(k) and the whole procedure
is repeated at the next time-step k + 1.

4.2. Complexity of the control problem

The complexity of the control problem with discrete inputs is
primarily subject to the maximum prediction horizon (H) and the
number of discrete inputs with the associated possible input val-

2 Before beginning the exploration of the tree of evolution, the initial value of
the current optimal node is set to infinity Jopt = ∞.

ues. Let us denote the first input u1 and the associated number of
discrete values m1 (and so on). Let us assume there are l inputs.
Since there are no continuous inputs, the number of combina-
tions of input-vector values can be calculated as in Eq. (22). The
worst-case complexity of the system is therefore proportional to
the value in Eq. (23). The complexity grows exponentially with
the number of combinations of input-vector values M0 and the
maximum prediction horizon H.

M0 = m1, . . . , ml (22)

C0 = MH
0 (23)

Due to physical and technological constraints it is usually pos-
sible to select only a limited number (M) of combinations of
input-vector values, where M < M0. The worst-case complexity
of the same control problem and consequently the time needed
to solve the optimization problem can thus be reduced by the
factor shown in the following equation:

CM

C0
=

(
M

M0

)H
(24)

4.3. Reachability analysis

Generally, it is not always possible to apply every input vector
from the selection mentioned above, for example branchu1 from
node V4 (see Fig. 1). Some of the input vectors, for instance,
may lead the system into undesirable states. In every time-step,
such input vectors must be detected and omitted, which can be
done by means of a reachability analysis. However, many of the
reachable states do not lead to an optimal solution or, to put it
another way, a better solution has already been found. Therefore,
it is reasonable to detect and eliminate such non-promising3

states from further exploration as early as possible, in order to
reduce the complexity of the control problem. The algorithm
is a kind of branch and bound procedure, which involves
the generation of a tree of evolution that was described in
Section 4.1.

The inputs, outputs and system states can be constrained
for a number of reasons (either physical constraints due to the
nature of the system, or constraints in connection with quality
or safety in control). The physical constraints must be included
in the model and are considered when building the tree of evo-
lution by means of reachability analysis. On the other hand,
the control-related constraints are usually considered in the cost
function.

4.4. Cost function

Cost-function selection has a great influence on the behavior
of the system, on the size of the fully explored tree of evolu-
tion, and hence on the computational complexity of the control
problem. Generally, the cost function can be described as in the

3 Non-promising states are states that are definitely not leading to the optimal
solution of the control problem.
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following equation:

Ji = J(Xk+h−1
k ,Qk+h−1

k , Uk+h−2
k , k, h)

for h = 1, 2, . . . , H ;

where Xk+h−1
k = {x-(k), x-(k + 1), . . . , x-(k + h− 1)};

Qk+h−1
k = {q(k), q(k + 1), . . . , q(k + h− 1)};

where x- is the vector of continuous states and q

is the discrete state of the system (25)

As stated in Section 4.1, it is desirable to detect and eliminate the
non-promising states from further exploration as early as possi-
ble. Since the detection is based on comparing Ji to Jopt, it must
be ensured that no better solution than the current optimal one
can be found by continuing the exploration from the eliminated
node. Therefore, the cost value has to be monotonically increas-
ing with the prediction-step h, as in the following equation:

J(Xk+h−1
k ,Qk+h−1

k , Uk+h−2
k , k, h− 1)

≤ J(Xk+hk ,Qk+h−1
k , Uk+h−1

k , k, h); for h = 2, 3, . . . , H

(26)

In (27)–(29) we have proposed a universally usable form of
cost function that can easily be applied to most of the systems
met in practice.

J(Xk+hk ,Qk+h−1
k , Uk+h−1

k , k, h)

= J(Xk+h−1
k ,Qk+h−1

k , Uk+h−2
k , k, h− 1)

+ f (x-(k + h|k), q(k + h|k), u- (k + h− 1|k), k, h);

for h = 1, 2, . . . , H (27)

f (x-(k + h|k), q(k + h|k), u- (k + h− 1|k), k, h) ≥ 0;

for h = 1, 2, . . . , H (28)

J(Xkk,Q
k
k, {}, k, 0) = 0; for h = 0 (29)

The function f (28) is an arbitrary non-negative function that
estimates the quality of control. Its value is added to the sum of
the cost functions calculated along the path from the root-node
to the current node in the tree of evolution. Function f basi-
cally penalizes the predicted deviations of system states from
the reference trajectory (e.g., by calculating the sum of pon-
dered squares of deviations), therefore, the cost-function value
increases more rapidly along non-optimal paths in the tree of
evolution. Since the function f does not have any special require-
ments apart from (28), it is relatively easy to determine a suitable
cost function for an actual problem.

It is trivial to prove that the proposed cost function complies
with condition (26).

4.5. Holding the inputs through a number of time-steps

The maximum time of prediction reached in the control
algorithm Tpred depends on two parameters (see Eq. (30)): the

sampling time TS and the maximum prediction horizon H.

Tpred = HTS (30)

Since the sampling time TS is determined by factors that in
most cases cannot be changed,4 the only way to reach a longer
time of prediction Tpred seems to be by increasing the maximum
prediction horizon H. However, as stated in Section 4.2, by
doing that the complexity of the control problem increases
drastically.

In many cases it is possible (or even recommendable) not to
change the input-vector values each sampling time. For instance,
when the sampling time is relatively short, actuators could get
overloaded. For this reason we have proposed an approach where
the same input-vector values are kept through several (Z) time-
steps or, to put it another way, the input-vector values can change
only every Z time-steps.

In this case the maximum reachable time of prediction Tpred
is determined in (31). Here, HZ = H/Z is the new maximum pre-
diction horizon required to reach the desired maximum time of
prediction Tpred:

Tpred = TSZHZ (31)

The complexity of the control problem (provided Tpred is
constant) can thus be reduced by the factor shown in Eq. (32), or
rather, a longer time of prediction Tpred can be reached, whereas
the complexity increases linearly instead of exponentially:

CZ

CM
= (MZ)HZ

MH
=

(
Z

MZ−1

)HZ
(32)

By holding the inputs through Z time-steps several objectives
can be achieved:

• Decrease the maximum prediction horizon H required to reach
the desired maximum time of prediction Tpred and thus reduce
the complexity of the control problem.

• Enable a longer maximum time of prediction Tpred (with the
same equipment).

• Enable a shorter sampling time TS while retaining the maxi-
mum time of prediction Tpred (on the same equipment).

• Relieve the potentially overloaded actuators.

We believe that holding the inputs through Z time-steps can
improve the control for a class of systems, where changing the
input vector every sample time is not needed or wanted, for
example, for stiff systems. The optimal value of the parameter
Z depends on the system. The higher the value of Z, the lower
the maximum frequency of input changes and vice versa. Its
determination is a trial and error procedure that can be done
using simulation.

Due to a longer reachable maximum time of prediction Tpred,
we expect that increasing Z should cause the simulation results
to improve and eventually reach the optimum. On the other hand,
further increasing of the parameter Z is expected to cause a dete-
rioration of the results, which happens because the inputs do not

4 For example, the dynamics of the system, the accuracy of prediction needed
and the eventual sampling time of the sensors used, and so forth.
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change frequently enough to ensure a satisfactory control (Karer,
Mušič, & Zupančič, 2005).

5. Batch reactor

The usability of the control algorithm in combination with the
hybrid fuzzy model has been verified on a simulation example of
a real batch reactor that is situated in a pharmaceutical company
and is used in the production of medicines. The goal is to control
the temperature of the ingredients stirred in the reactor core so
that they synthesize into the final product. In order to achieve
this, the temperature has to follow the reference trajectory given
in the recipe as accurately as possible.

A scheme of the batch reactor is shown in Fig. 2. The reactor’s
core (temperature T) is heated or cooled through the reactor’s
water jacket (temperature Tw). The heating medium in the water
jacket is a mixture of fresh input water, which enters the reactor
through on/off valves, and reflux water. The water is pumped
into the water jacket with a constant flow φ. The dynamics
of the system depend on the physical properties of the batch
reactor, namely, the mass m and the specific heat capacity c of
the ingredients in the reactor’s core and in the reactor’s water
jacket (here, index w denotes the water jacket). λ is the thermal
conductivity; S the contact area; T0 is the temperature of the
surroundings.

The temperature of the fresh input water Tin depends on
two inputs: the position of the on/off valves kH and kC. How-
ever, there are two possible operating modes of the on/off
valves. In case kC = 1 and kH = 0, the input water is cool
(Tin = TC = 12 ◦C), whereas if kC = 0 and kH = 1, the input water
is hot (Tin = TH = 75 ◦C).

The ratio of fresh input water to reflux water is controlled by
the third input, that is, by the position of the mixing valve kM.
There are six possible ratios that can be set by the mixing valve.
The fresh input water share can be either 0, 0.01, 0.02, 0.05, 0.1
or 1.

We are therefore dealing with a multivariable system with
three discrete inputs (kM, kH and kC) and two measurable outputs
(T and Tw).

Due to the nature of the system, the time constant of the tem-
perature in the water jacket is obviously much shorter than the

Fig. 2. Schematic representation of the batch reactor.

time constant of the temperature in the reactor’s core. Therefore,
the batch reactor is considered as a stiff system.

5.1. Modelling and identification of the batch reactor

The model of the batch reactor is obtained in two steps:

• The multivariable system is divided into simpler MISO sub-
systems.

• Each discrete-time submodel is identified individually.

It is also feasible to construct a model with only one operat-
ing mode. However, since the model parameters are obtained by
matrix inversion, this could result in numerical problems due to
bad conditioning of the matrices used in identification. In addi-
tion, more parameters would have to be estimated (as a result of
a higher dimension of �), which impairs the quality of identi-
fication results. Therefore, by using the proposed hybrid fuzzy
model structure we have the advantage of avoiding the possible
numerical problems in identification.

The heat-flow in the reactor system can be divided as follows:

• Heat conduction between the reactor’s core and the reactor’s
water jacket.

• Heat conduction between the reactor’s water jacket and the
surroundings.

• Heat convection due to an influx of fresh input water into the
reactor’s water jacket.

• Heat convection due to outflow of the heating medium from
the reactor’s water jacket.

In this manner it is possible to divide the unknown sys-
tem into simpler MISO subsystems and thus apply some prior
knowledge of the system in the modelling. Hence, such an
identification of the unknown system is regarded as gray-box
identification.

In order to carry out the identification, suitable input–output
data of the batch-reactor process has to be obtained. Therefore,
we generated a pseudo-random input signal and applied it to the
batch-reactor process. A sampling time of TS = 10 s was used.
The inputs at each time-step were randomly selected so that
the input signal was a sort of step function. The frequency of
input changes must be high enough to cover the whole frequency
range of the system that we are interested in. This way, the
identification data can characterize the complete dynamics of
the system.

The time needed to acquire the data used for identification
was longer than one batch cycle. However, this does not affect the
dynamics of the system, because there are no endo- or exother-
mic reactions in the reactor. The reactor core contains granulated
material that is stirred, heated and cooled in order to produce a
homogenous compound.

We recorded the measurable outputs, that is, the reactor’s
core temperature T and the reactor’s water-jacket temperature
Tw. The outputs are shown in Fig. 3. A close-up is shown in
Fig. 4.
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Fig. 3. Core temperature T (solid line) and water-jacket temperature Tw (dotted
line).

5.2. Temperature in the reactor’s core

The temperature in the reactor’s core is influenced only by
the heat conduction between the reactor’s core and the reac-
tor’s water jacket, which depends on the temperature difference
between the reactor’s water jacket Tw and the reactor’s core T.
Therefore, a first-order MISO submodel can be presumed, as
shown in Eq. (33). Here, the regressor consists of the temper-
ature in the water jacket Tw(k) and the temperature in the core
T(k) in the current time-step.

T̂ (k + 1) = f (Tw(k), T (k)) (33)

Since we have surmised that the heat conduction is propor-
tional to the temperature difference between the reactor’s core
and the reactor’s water jacket, we can presume a linear model,
as in the following equation:

T̂ (k + 1) = �T[Tw(k)T (k)]T (34)

Fig. 4. Core temperature T (solid line) and water-jacket temperature Tw (dotted
line).

After conducting a least-squares identification we obtain the
system parameters �.

�T = [ 0.0033 0.9967 ] (35)

5.3. Temperature in the reactor’s water jacket

The temperature in the reactor water jacket Tw is influenced
by all the heat-flow sources previously mentioned. Therefore, a
MISO submodel can be presumed, as shown in Eq. (36). Here,
the regressor consists of the values in the current time-step k of
the temperature in the water jacket Tw(k), the temperature in the
core T(k), the fresh input water inflow at the mixing valve kM(k),
and the position of the cold-water and hot-water on/off valves
kC(k) and kH(k), respectively.

T̂w(k + 1) = F (Tw(k), T (k), kM(k), kC(k), kH(k)) (36)

The modelling and parameter estimation of the subsystem
were carried out in a similar manner to that described in Sections
2.2 and 3.

Let us assume two operating modes of the subsystem (s = 2).

• The first operating mode (q = 1) is the case when the fresh
input water is hot, that is, kC(k) = 0 and kH(k) = 1.

• The second operating mode (q = 2) is the case when the fresh
input water is cool, that is, kC(k) = 1 and kH(k) = 0.

By further subdividing the MISO model in Eq. (36) we have
established the discrete part of the hybrid fuzzy model, which is
given in the following equation:

q(k) = q(kC(k), kH(k)) =
{

1 if kC(k) = 0 ∧ kH(k) = 1

2 if kC(k) = 1 ∧ kH(k) = 0

}
(37)

Next, the membership functions have to be defined. The sys-
tem is fuzzyfied with regard to the temperature in the reactor’s
water jacket Tw(k). Simple triangular functions are used, as
shown in Fig. 5.

Fig. 5. Membership functions.
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Such a form of the membership functions ensures that the
normalized degrees of fulfillment βj(Tw) are equal to the mem-
bership valuesμj(Tw) across the whole operating range for each
rule Rjd, respectively. In this case there are five membership
functions (K = 5), with maximums at 12, 20, 40, 60 and 70 ◦C,
so that the whole operating range is covered.

The rule base of the hybrid fuzzy model is hence given in
Eq. (38). We presume that a local system corresponding to an
individual rule Rjd is affine.

Rjd : if q(k) is Qd and Tw(k) is Aj1

then Tw(k + 1) = a1jdTw(k) + a2jdT (k) + b1jdkM(k) + rjd,

for j = 1, . . . , 5 and d = 1, 2 (38)

The output of the hybrid fuzzy model corresponding to rule
Rjd can therefore be formulated as in the following equation:

T̂ jdw (k + 1) = �T
jd[Tw(k) T (k) kM(k) 1 ]T (39)

After conducting a least-squares identification for each rule
Rjd respectively (see Section 3), we obtain the matrices with the
system parameters below for both operating modes (�1 for q = 1
and �2 for q = 2).

�1 =

⎡
⎢⎢⎢⎣

0.9453 0.9431 0.9429 0.9396 0.7910

0.0376 0.0458 0.0395 0.0339 0.0225

19.6748 16.7605 10.5969 3.9536 1.6856

0.3021 0.2160 0.5273 1.2701 12.0404

⎤
⎥⎥⎥⎦
(40)

�2 =

⎡
⎢⎢⎢⎣

0.9803 0.9740 0.9322 0.9076 0.8945

0.0025 0.0153 0.0466 0.0466 0.0111

−0.0704 −0.6956 −7.8013 −12.2555 −18.7457

0.2707 0.2033 0.5650 1.9179 5.6129

⎤
⎥⎥⎥⎦

(41)

To sum up, the output of the model of the temperature in
the reactor’s water jacket is written in a compact form in the
following equation:

T̂w(k + 1) = β(k)�T(k)[Tw(k) T (k) kM(k) 1 ]T (42)

6. Control

Once we have obtained the model of the process we wish to
control, we can move on to establishing the input matrix P, which
contains every allowed combination of input-vector values (see
Eq. (43)). Here, each column represents an input vector. The
rows of the respective input vectors have the following meaning:

• The first row denotes the mixing-valve input kM ∈ {0, 0.01,
0.02, 0.05, 0.1, 1}.

• The second row denotes the cool-water on/off valve input
kC ∈ {0, 1}.

• The third row denotes the hot-water on/off valve input
kH ∈ {1, 0}.

Fig. 6. Core temperature T (solid line) and reference temperature Tref (dotted
line).

P =

⎡
⎢⎣

0 0.01 0.02 0.05 0.1 1 1

0 0 0 0 0 0 1

1 1 1 1 1 1 0

⎤
⎥⎦ (43)

In the last step we establish a suitable cost function (see Sec-
tion 4.4). According to the prepositions in Eqs. (27)–(29), a
simple cost function that takes into consideration the square of
deviation of the core temperature T from the reference temper-
ature Tref, is given in Eq. (44). In such a manner the control
performance can be quantitatively estimated along the tree of
evolution.

J(Xk+hk ,Qk+h
k , Uk+h−1

k , k, h)

= J(Xk+h−1
k ,Qk+h−1

k , Uk+h−2
k , k, h− 1)

+(T (k + h) − Tref(k + h))2 (44)

The results of the experiment are shown in Figs. 6 and 7.
The maximum prediction horizon was HZ = 4 and the number of
time-steps, through which the inputs are held, was Z = 15.

Fig. 7. Other system states.
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We can ascertain that the reference temperature Tref was well
followed by the actual core temperature T. However, there are
still three obvious aspects where improvement is needed.

• The valves were moving too much.
• In several time-frames the control was carried by the on/off

valves, whereas the mixing valve was relatively open. How-
ever, such behavior had been expected, for the on/off valves
can be regarded as another mixing valve, which has a greater
influence on the core temperature T than the actual mixing
valve.

• The total consumption of fresh input water was too high.
Again, this is due to the fact that the mixing valve was fully
open for too long during the experiment.

We tried to improve the problematic aspects of the control
by including a sort of penalty for the movement of the valves
in the cost function in Eq. (44). The modified cost function is
established in the following equation:

J(Xk+hk ,Qk+h
k , Uk+h−1

k , k, h)

= J(Xk+h−1
k ,Qk+h−1

k , Uk+h−2
k , k, h− 1)

+w1(T (k + h) − Tref(k + h))2

+w2(kC(k + h) kH(k + h− 1))

+w3|kM(k + h) − kM(k + h− 1)|kH(k + h− 1) (45)

The summands in the cost function were weighted as follows:

• The square of the deviation of the core temperature T from
the reference trajectory Tref was weighted according to the
choice of the parameter Z, in order to enable the control per-
formance comparison among simulations employing different
Z. w1 = 1/Z.

• w2weights the event of changing fresh input water from hot
to cool. This prevents the changes of the on/off valves when
there is no negative step in the reference temperature signal
Tref. The weight was set as high as possible, but low enough
to allow the on/off valves to change when a reference step
occurs. w2 = 15.

• Next,w3 was decreased, so that the control would not be taken
over exclusively by the on/off valves. w3 = 0.03.

The results of the experiment are shown in Figs. 8 and 9.
We can ascertain that the reference temperature Tref was again

well followed by the actual core temperature T. What is more, by
setting the cost function correctly, all three problematic aspects
of the control were satisfactorily solved.

6.1. Comparison between MPC employing a hybrid fuzzy
model and a hybrid linear model

In order to compare MPC employing a hybrid fuzzy model
to MPC employing a hybrid linear model, we have to attain the
linear model for the temperature in the reactor’s water jacket

Fig. 8. Core temperature T (solid line) and reference temperature Tref (dotted
line).

(see Eq. (36)). The linear model can easily be derived from the
fuzzy model by linearizing it close to the center of the fuzzyfied
operating range. In other words, we have used a fixed degree of
fulfillment vector β = [ 0 0 1 0 0 ]. Therefore, only one
of the fuzzy regions was taken into account when identifying
the linear model. In this sense, the model parameters are given
in Eqs. (46) and (47), whereas the output is obtained according
to Eq. (48).

�1,lin = [ 0.9429 0.0395 10.5969 0.5273 ]T (46)

�2,lin = [ 0.9322 0.0466 −7.8013 0.5650 ]T (47)

T̂w(k + 1)

=
{

�T
1,lin[Tw(k) T (k) kM(k) 1 ]T if kC = 0 ∧ kH = 1

�T
2,lin[Tw(k) T (k) kM(k) 1 ]T if kC = 1 ∧ kH = 0

}

(48)

The results of the experiment with the linear model employed
in MPC are shown in Figs. 10 and 11. Again, the cost function
in Eq. (45) was used.

Fig. 9. Other system states.
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Fig. 10. Core temperature T (solid line) and reference temperature Tref (dotted
line).

Fig. 11. Other system states.

Fig. 12. Core temperature T: comparison between hybrid fuzzy model (higher
trajectory) and hybrid linear model employed in MPC. Tref = 62 ◦C.

Fig. 13. Core temperature T: comparison between hybrid fuzzy model (lower
trajectory) and hybrid linear model employed in MPC. Tref = 26 ◦C.

Fig. 14. Core temperature T: comparison between hybrid fuzzy model (higher
trajectory) and hybrid linear model employed in MPC. Tref = 35 ◦C.

A close-up of the relevant sections is presented in Fig. 12,
where the reference temperature is Tref = 62 ◦C, and in Fig. 13,
where the reference temperature is Tref = 26 ◦C. We can con-
clude that the MPC algorithm employing the hybrid fuzzy model
clearly outperforms the case where the linear model is used.

In the third part of the experiment, where the reference tem-
perature is Tref = 35 ◦C, the hybrid linear model approximates
the identified system more adequately. The control performance
is therefore more comparable to the case in which the hybrid
fuzzy model is employed. That said, still better performance is
achieved in the latter case, as can be seen in Fig. 14.

7. Conclusion

A hybrid fuzzy modelling approach for the MPC of non-
linear hybrid systems with discrete inputs based on a reachability
analysis was treated.

In order to implement a MPC algorithm, a suitable model
of the process we are dealing with is needed. In the paper, a
hybrid fuzzy modelling approach with a compact formulation



Author's personal copy

1564 G. Karer et al. / Computers and Chemical Engineering 31 (2007) 1552–1564

was introduced. The hybrid system hierarchy was explained
and the Takagi–Sugeno fuzzy formulation for the hybrid fuzzy
modelling purposes was presented. An efficient method for iden-
tifying the hybrid fuzzy model was also discussed.

A MPC algorithm suitable for systems with discrete inputs
was treated. The benefits of the MPC algorithm employing a
proposed hybrid fuzzy model were verified on a batch-reactor
example. The results suggest that by suitably determining the
cost function, satisfactory control can be attained, even when
dealing with complex hybrid–non-linear-stiff systems such as
the batch reactor.

Finally, a comparison between MPC employing a hybrid lin-
ear model and a hybrid fuzzy model was made. It was established
that the latter approach clearly outperforms the approach where
a linear model is used.
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